

OR

$\cos (A-B)=\frac{\sqrt{3}}{2}=\cos 30^{\circ}$
$\sin (A+B)=\frac{\sqrt{3}}{2}=\sin 60^{\circ}$
$A-B=30^{\circ}$
$A+B=60^{\circ}$
Adding (i) and (ii),
$2 \mathrm{~A}=90^{\circ}$
$\Rightarrow A=45^{\circ}$
Substituting this value of A in equation (1),
we get $B=15^{\circ}$
$\angle \mathrm{ADE}=\angle \mathrm{AED}$ and $\frac{A D}{D B}=\frac{\mathrm{AE}}{\mathrm{EC}}$ (Given)
By converse of BPT, DE \|BC
$\angle A D E=\angle A B C$ and corresponding $\angle s$
$\angle A E D=\angle A C B$
$\Rightarrow \angle A B C=\angle A C B$
$\therefore \mathrm{BAC}$ is an isosceles triangle.

25

Angle subtended in 35 minutes $=35 \times 6^{\circ}$
210°
Area swept by the minute hand
= Area of a sector $=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{210}{360} \times \frac{22}{7} \times 14 \times 14$
$=\frac{1078}{3} \mathrm{~cm}^{2}$

OR

Central angle of major sector
$360^{\circ}-45^{\circ}=315^{\circ}$
Area of a sector $=\frac{\theta}{360} \times \pi r^{2}$
$=\frac{315}{360} \times \frac{22}{7} \times 28 \times 28$
$=2156 \mathrm{~cm}^{2}$

Given a circle with centre O, an external point
T and two tangents TP and TQ
to the circle, where P, Q are the points of contact

To prove: $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$
Proof: Let $\angle \mathrm{PTQ}=\theta$
$T P=T Q$ (Tangents from an external point)
So, TPQ is an isosceles triangle.
Therefore, $\angle \mathrm{TPQ}=\angle \mathrm{TQP}=\frac{1}{2}\left(180^{\circ}-\theta\right)$

$$
\begin{equation*}
=90^{\circ}-\frac{1}{2} \theta \tag{1}
\end{equation*}
$$

$\angle \mathrm{OPT}=90^{\circ}(\angle$ between the tangent and radius)

$$
\begin{align*}
\angle \mathrm{OPQ} & =\angle \mathrm{OPT}-\angle \mathrm{TPQ}=90^{\circ}-\left(90^{\circ}-\frac{1}{2} \theta\right) \tag{1/2}\\
& =\frac{1}{2} \theta=\frac{1}{2} \angle \mathrm{PTQ} \Rightarrow \angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}(1 / 2)
\end{align*}
$$

OR
Let the speed of the car I from A be x and speed of the car II from B be y.

Same Direction:

Distance covered by car I = $150+$ (distance covered by car II)
$15 x=150+15 y$
$15 x-15 y=150$
$x-y=10 \ldots$...(1)
Opposite Direction:
Distance covered by car I + distance covered by car II
$=150 \mathrm{~km}$
$x+y=150 \ldots$...(2)
Adding equation (1) and (2), we have $x=80$.
Substituting $x=80$ in equation (1),
we have $y=70$.
Speed of the car I from $A=80 \mathrm{~km} / \mathrm{hr}$ and speed of the car II from $B=70 \mathrm{~km} / \mathrm{hr}$.

Let the sides of the two squares be x m and y
m.
$x^{2}+y^{2}=468$
$4 x-4 y=24 \Rightarrow x-y=6 \Rightarrow y=x-6$
$x^{2}+(x-6)^{2}=468$
$2 x^{2}-12 x-432=0 \Rightarrow x^{2}-6 x-216=0$
$(x+12)(x-18)=0$
$x=-12($ rejected $), x=18$
The sides of the squares are 18 m and 12 m .

32
$\frac{3}{x+1}+\frac{4}{x-1}=\frac{29}{4 x-1} ; x \neq-1,1, \frac{1}{4}$
$\frac{3 x-3+4 x+4}{(x+1)(x-1)}=\frac{29}{4 x-1}$
$\frac{7 x+1}{x^{2}-1}=\frac{29}{4 x-1} \Rightarrow(7 x+1)(4 \mathrm{x}-1)=29 \mathrm{x}^{2}-29$
$28 x^{2}-7 x+4 x-1=29 x^{2}-29$
$28 x^{2}-3 x-1=29 x^{2}-29$
$x^{2}+3 x-28=0$
(1/2)
33
For the Theorem: Given, To prove,
Construction and figure
Proof
$A D=D B \quad$ Given D is the midpoint of
AB
........(i)
$\therefore \frac{A D}{D B}=1$
$\frac{A D}{D B}=\frac{A E}{E C \quad \text { Basic }}$
Proportionality Th. (1/2)

$\therefore \frac{A E}{E C}=1 \Rightarrow \mathrm{AE}=\mathrm{EC}$

$$
(1 / 2)
$$

$\therefore \mathrm{E}$ is the midpoint of AC .

Cylinder:

$h_{1}=6 \mathrm{~m}, \mathrm{r}=28 \mathrm{~m}$
Cone:
$h_{2}=21 \mathrm{~m}, \mathrm{r}=28 \mathrm{~m}$
$l^{2}=21^{2}+28^{2}=1225$
$I=35 \mathrm{~m}$

TSA of tent $=2 \pi r h_{1}+\pi r l=\pi r\left(2 h_{1}+\mathrm{I}\right)$
$=\frac{22}{7} \times 28(2 \times 6+35)=4136 \mathrm{~m}^{2}$
The required area of the canvas is $4136 \mathrm{~m}^{2}$.

34	OR The radius BO of the hemisphere (as well as of the cone) $=\frac{1}{2} \times 4 \mathrm{~cm}=2 \mathrm{~cm}$ Vol. of toy $=$ $\begin{align*} & \frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} \mathrm{~h} \tag{1/2}\\ & =\left[\frac{2}{3} \times 3.14 \times(2)^{3}+\frac{1}{3} \times 3.14 \times(2)^{2} \times 2\right] \mathrm{cm}^{3}=25.12 \mathrm{~cm}^{3} \tag{2} \end{align*}$ the volume required = volume of the right circular cylinder - volume of the toy $\begin{align*} & =\left(3.14 \times 2^{2} \times 4-25.12\right) \mathrm{cm}^{3} \tag{1/2}\\ & =25.12 \mathrm{~cm}^{3} \tag{1} \end{align*}$
35	
	Classes Class mark $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)(1)$ Frequency $\left(\boldsymbol{f}_{\boldsymbol{i}}\right)$ $\boldsymbol{f}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}(1)$
	10-30
	70-90
	90-110 100 3
	110-130 ${ }^{\text {a\|c\|c }}$
	50 3280
	$\begin{align*} \text { Mean } & =\frac{\sum f_{i} x_{i}}{\sum f_{i}} \tag{1/2}\\ & =\frac{3280}{50}=65.6 \tag{1/2} \end{align*}$ Mode: $\begin{align*} & f_{0}=12, f_{1}=20, f_{2}=3, l=70, \mathrm{~h}=20 \tag{1}\\ & \text { Mode }=I+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \mathrm{h} \\ & \quad=70+\left(\frac{20-12}{2 \times 20-12-3}\right) \times 20 \tag{1/2}\\ & \quad=70+\left(\frac{8}{25}\right) \times 20=70+6.4=76.4 \tag{1/2} \end{align*}$

36	SECTION E (I) $(0,-9)$ (1) (II) 6 units (1) (III) Centre forward($-3,8$), Full back(5, -5) Distance $=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ $\begin{align*} & =\sqrt{(-3-5)^{2}+(8+5)^{2}} \\ & =\sqrt{(-8)^{2}+(13)^{2}} \\ & =\sqrt{64+169}=\sqrt{233} \text { units } \tag{1} \end{align*}$ OR Centre Forward $(3,8)$, Side Midfielder $(7,2)$ $\begin{equation*} \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{3+7}{2}, \frac{8+2}{2}\right)=(5,5) \tag{1} \end{equation*}$	37	OR $\begin{align*} & \tan 30^{\circ}=\frac{D C}{60} \tag{1/2}\\ & \Rightarrow \frac{1}{\sqrt{3}}=\frac{D C}{60} \tag{1/2}\\ & \Rightarrow \mathrm{DC}=\frac{60}{\sqrt{3}} \mathrm{~m}=20 \sqrt{3} \mathrm{~m} \tag{1/2}\\ & \mathrm{AE}=\mathrm{DC}=20 \sqrt{3} \mathrm{~m} \tag{1/2} \end{align*}$ The required height is $20 \sqrt{3} \mathrm{~m}$.
37	(I) (II) $\cos 45^{\circ}=\frac{60}{A B} \Longrightarrow \frac{60}{A B}=\frac{1}{\sqrt{2}}$ $\mathrm{AB}=60 \sqrt{2} \mathrm{~m}$ The required distance is $60 \sqrt{2} \mathrm{~m}$ $\begin{align*} & \text { (III) } \tan 45^{\circ}=\frac{B D}{60} \Rightarrow 1=\frac{B D}{60} \Rightarrow \mathrm{BD}=60 \mathrm{~m} \tag{1/2}\\ & \tan 30^{\circ}=\frac{D C}{60} \Rightarrow \frac{1}{\sqrt{3}}=\frac{D C}{60} \Rightarrow \mathrm{DC}=\frac{60}{\sqrt{3}} \mathrm{~m} \\ & =20 \sqrt{3} \mathrm{~m} \tag{1} \end{align*}$ Height of the tower $=60+20 \sqrt{3}=20(3+\sqrt{3}) \mathrm{m}(1 / 2)$	38	$\begin{aligned} & \text { (l) } a_{6}=800, a_{9}=1130 \\ & a+5 d=800 \ldots . . . \text { (i) } \\ & a+8 d=1130 \ldots . . \text { (ii) } \end{aligned}$ Solving (i) and (ii), $d=110, a=250$ Production in the first year $=250$ rollers (1) (II)Increase in the company's production every year $\begin{align*} & \mathrm{d}=110 \tag{1}\\ & (\mathrm{III}) a_{n}=(a+(n-1) d) \\ & 1460=250+(\mathrm{n}-1) 110 \tag{1}\\ & 1210=(\mathrm{n}-1) \times 110 \Rightarrow 121=(\mathrm{n}-1) 11 \\ & \Rightarrow \mathrm{n}=12 \tag{1} \end{align*}$ OR $\begin{align*} & S_{n}=\frac{n}{2}(2 a+(n-1) d) \\ & S_{6}=\frac{6}{2}(2 \times 250+(7) 110) \tag{1}\\ & =3(500+770)=3(1270)=3810 \tag{1} \end{align*}$ The company's total production for the first 6 years $=3810$

SECTION B		SECTION B		SECTION B	
21		21	SET 1 Qn. No: 25	21	SET 1 Qn. No: 23
22		22	SET 1 Qn. No: 24	22	SET 1 Qn. No: 22
23		23	SET 1 Qn. No: 23	23	SET 1 Qn. No: 25
24		24	SET 1 Qn. No: 22	24	SET 1 Qn. No: 24
25		25	SET 1 Qn. No: 21	25	SET 1 Qn. No: 21
SECTION C		SECTION C		SECTION C	
26		26	SET 1 Qn. No: 31	26	SET 1 Qn. No: 26
27		27	SET 1 Qn. No: 30	27	SET 1 Qn. No: 31
28		28	SET 1 Qn. No: 29	28	SET 1 Qn. No: 30
29		29	SET 1 Qn. No: 26	29	SET 1 Qn. No: 27
30		30	SET 1 Qn. No: 28	30	SET 1 Qn. No: 28
31		31	SET 1 Qn. No: 27	31	SET 1 Qn. No: 29
SECTION D		SECTION D		SECTION D	
32		32	SET 1 Qn. No: 34	32	SET 1 Qn. No: 35
33		33	SET 1 Qn. No: 35	33	SET 1 Qn. No: 34
34		34	SET 1 Qn. No: 32	34	SET 1 Qn. No: 33
35		35	SET 1 Qn. No: 33	35	SET 1 Qn. No: 32
SECTION E		SECTION E		SECTION E	
36		36	SET 1 Qn. No: 37	36	SET 1 Qn. No: 38
37		37	SET 1 Qn. No: 38	37	SET 1 Qn. No: 36
38		38	SET 1 Qn. No: 36	38	SET 1 Qn. No: 37

